您的位置:资讯首页 > 初中 > 初中知识点 > 初中数学知识点 >
多边形的内角和题型的解法
时间:2013-10-10 15:28:16 来源:未知 作者:秩名 阅读:次
在一次《多边形的内角和》的课堂上,有一个教学环节是这样设计的:让学生思考任意一个四边形的内角和是多少?用这种方法能否求五边形、六边形等多边形的内角和?[1]而在课堂上,同学们给出了许多种求四边形内角和的方法,虽然有的方法不太适合推广到五边形、六边形,但其中不乏有课前我没有意料到的方法,当然我也没想到学生们会有如此多的方法。为了不打断学生的想法,给学生一个展示自我的机会,更为了拓展学生的思维,我抓住了这一难得的机会,充分让学生展示他们活跃的思维,而把预先准备的一些内容放到了下一节课。我不知道这样做好不好,但至少有一点,学生们主动地进行了观察、实验、猜测、验证、推理与交流等数学活动,这是一个生动活泼的、主动的和富有个性的过程,增强了学生学习数学的兴趣,使不同的人在数学上得到了不同的发展[2]。下面就一一列举学生们的解法,其中解法一~解法五是预先设计的。 解法一:如图1,连接AC,四边形ABCD的内角和等于两个三角形内角和的和,即180°×2=360°。 解法二:如图2,连接AC、BD,四边形ABCD的内角和等于四个三角形内角和的和减去360°,即180°×4-360°=360°。 解法三:如图3,在四边形ABCD内取一点P,连接PA、PB、PC、PD,四边形ABCD的内角和等于四个三角形内角和的和减去360°,即180°×4-360°=360°。 解法四:如图4,在BC边上取一点P,连接PA、PD,四边形ABCD的内角和等于三个三角形内角和的和减去180°,即180°×3-180°=360°。
解法五:如图5,在四边形ABCD外取一点P,连接PA、PB、PC、PD,四边形ABCD的内角和等于三个三角形内角和的和减去180°,即180°×3-180°=360°。
解法六:如图6,连接BD,延长BA至E,延长BC至F,∵∠EAD=∠ABD+∠BDA,∠FCD=∠CBD+∠BDC,∴四边形ABCD的内角和等于(∠EAD+∠BAD)+(∠FCD+∠BCD)=180°+180°=360°。
解法七:如图7,过点A、D分别作BC的平行线AE、DF,则∠EAB=∠B,∠EAD=∠ADF,∠CDF=∠C,∴四边形ABCD的内角和等于∠BAD+∠EAB+(∠CDF+∠CDA)=∠BAD+∠EAB+∠ADF =∠BAD+∠EAB+∠EAD =360°。
解法八:如图8,过点A、D分别作BC的垂线AE、DF,垂足分别为E、F,过点A作DF的垂线AG,垂足为G,则∠AEC=∠DFB=∠AGF=∠EAG=90°,∵∠AEC=∠B+∠BAE,∠DFB=∠C+∠CDF,∠AGF=∠DAG+∠ADF,∴四边形ABCD的内角和等于∠AEC+∠DFB+∠AGF+∠EAG=90°×4=360°。
解法九:若AB//CD,则∠B+∠C=∠A+∠D=180°,∴∠B+∠C+∠A+∠D=360°;若AB不平行于CD,如图9,不妨设BA、CD的延长线相交于点E,∵∠BAD=∠E+∠ADE,∠ADC=∠E+∠EAD,∴∠B+∠C+∠BAD+∠ADC=(∠B+∠C+∠E)+(∠ADE +∠E+∠EAD) =180°+180°=360°。综上可得,四边形ABCD的内角和等于360°
解法十:连接AC,并延长至G,过点C分别作AD、AB的平行线CE、CF,则∠D=∠DCE,∠DAC=∠ECG,∠BAC=∠FCG,∠B=∠FCB,∴四边形ABCD的内角和=∠B+∠BAC+∠CAD+∠D+∠BCD =∠FCB+∠FCG +∠ECG +∠DCE +∠BCD =360°。
以上这些证法中,充分发挥了学生的想象力、综合运用知识的能力,很好地训练了学生的思维,体现了“转化”这一重要数学思想方法地灵活运用,这一点对学生的发展很重要,而这也是新课程标准所倡导的。这堂课可能是一节不合格的课,但我还是希望我们数学老师能在课堂上不断探索、试验,大胆创新,只要我们本着新课程的理念,本着以学生的发展为本,相信中国数学教育的未来一定会取得辉煌的成绩。
相关导读
特别说明:
1.由于各方面情况的不断调整与变化,答疑网所提供的所有考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。
2.答疑网(www.prcedu.com)上的所有资料均为作者提供和网友推荐收集整理而来,仅供学习和研究使用。如有侵犯你版权的,请来信指出,本站将立即改正,客服邮箱:service@chinaedu.com