高中数学知识点

您的位置:资讯首页 > 高中 > 高中知识点 > 高中数学知识点 >

高中数学 函数

时间:2013-04-12 00:03:30 来源:未知 作者:秩名 阅读:

摘要:函数简介: 在 数学 领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素。 ----A variable so related to another that for each value assumed

函数简介:

数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素。
  ----A variable so related to another that for each value assumed by one there is a value determined for the other.
  自变量,函数一个与他量有关联的变量,这一量中的任何一值都能在他量中找到对应的固定值。
  ----A rule of correspondence between two sets such that there is a unique element in the second set assigned to each element in the first set.
  函数两组元素一一对应的规则,第一组中的每个元素在第二组中只有唯一的对应量。
  函数的概念对于数学和数量学的每一个分支来说都是最基础的。
  ~‖函数的定义: 设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作 y=f(x).
  数集D称为函数的定义域,由函数对应法则或实际问题的要求来确定。相应的函数值的全体称为函数的值域,对应法则和定义域是函数的两个要素。
  functions
  数学中的一种对应关系,是从非空集合A到实数集B的对应。简单地说,甲随着乙变,甲就是乙的函数。精确地说,设X是一个非空集合,Y是非空数集,f是个对应法则 , 若对X中的每个x,按对应法则f,使Y中存在唯一的一个元素y与之对应,就称对应法则f是X上的一个函数,记作y=f(x),称X为函数f(x)的定义域,集合{y|y=f(x),x到测量点的距离 x 之间的对应关系呈曲线,这代表一个函数,定义域为[0,b]。以上3例展示了函数的三种表示法:公式法 , 表格法和图 像法。
  一般地,在一个变化过程中,如果有两个变量X与Y,并且对于X的每一个确定的值,Y都有为一得值与其对应,那么我们就说X是自变量,Y是X的函数。如果当X=A时Y=B,那么B叫做当自变量的值为A时的函数值。
  复合函数  有3个变量,y是u的函数,y=ψ(u),u是x的函数,u=f(x),往往能形成链:y通过中间变量u构成了x的函数:
  x→u→y,这要看定义域:设ψ的定义域为U 。 f的值域为U,当U*ÍU时,称f与ψ 构成一个复合函数 , 例如 y=lgsinx,x∈(0,π)。此时sinx>0 ,lgsinx有意义 。但如若规定x∈(-π,0),此时sinx<0 ,lgsinx无意义,就成不了复合函数。


    分享到:

    相关导读

    康文岗| 专家教师

    辅导科目: 初中英语

    饶宇| 专家教师

    辅导科目:初中英语

    井萍| 专家教师

    辅导科目:初中语文

    涂健| 专家教师

    辅导科目: 高中数学

    张玉新| 专家教师

    辅导科目:高中化学

    耿国庆| 专家教师

    辅导科目:高中物理

    特别说明:

    1.由于各方面情况的不断调整与变化,答疑网所提供的所有考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。

    2.答疑网(www.prcedu.com)上的所有资料均为作者提供和网友推荐收集整理而来,仅供学习和研究使用。如有侵犯你版权的,请来信指出,本站将立即改正,客服邮箱:service@chinaedu.com

    专题推荐 更多>>
    精品课程辅导热线:400-6866-101

    开课时间辅导科目课程名称

    关于我们|答疑资讯|联系我们|商务合作|意见反馈|友情链接|网站地图|隐私条款|服务协议
    	 

    弘成答疑网

    北京现代兴业网络技术有限公司

    Copyright 2006-2010 prcedu.com, All Rights Reserved 京ICP证041171号

    网站备案信息 京公网安备编号:110101002605

    客服电话:400-6869-101 传真:010-84187332 邮件:Service1@chinaedu.net